High dimensional thresholded regression and shrinkage effect

نویسندگان

  • Zemin Zheng
  • Yingying Fan
  • Jinchi Lv
چکیده

High dimensional sparse modelling via regularization provides a powerful tool for analysing large-scale data sets and obtaining meaningful interpretable models.The use of nonconvex penalty functions shows advantage in selecting important features in high dimensions, but the global optimality of such methods still demands more understanding.We consider sparse regression with a hard thresholding penalty, which we show to give rise to thresholded regression. This approach is motivated by its close connection with L0-regularization, which can be unrealistic to implement in practice but of appealing sampling properties, and its computational advantage. Under some mild regularity conditions allowing possibly exponentially growing dimensionality, we establish the oracle inequalities of the resulting regularized estimator, as the global minimizer, under various prediction and variable selection losses, as well as the oracle risk inequalities of the hard thresholded estimator followed by further L2-regularization. The risk properties exhibit interesting shrinkage effects under both estimation and prediction losses. We identify the optimal choice of the ridge parameter, which is shown to have simultaneous advantages to both the L2-loss and the prediction loss. These new results and phenomena are evidenced by simulation and real data examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ارتباط ضخامت دنتین باندینگ رزینی با میزان انقباض پلیمریزاسیون: طراحی روش

Dentine bonding systems are usually unfilled, and so their shrinkage may be significant. High shrinkage may cause internal stress at the interface between resin-composite restoration and the dentine substrate. Failure of the adhesive interface may be observed due to the interna! stress. The aims of this study were:A) To obtain a suitable method for measuring the kinetics of polymerisation shrin...

متن کامل

Unbiased Shrinkage Estimation

Shrinkage estimation usually reduces variance at the cost of bias. But when we care only about some parameters of a model, I show that we can reduce variance without incurring bias if we have additional information about the distribution of covariates. In a linear regression model with homoscedastic Normal noise, I consider shrinkage estimation of the nuisance parameters associated with control...

متن کامل

Applications of James–Stein Shrinkage (I): Variance Reduction without Bias

In a linear regression model with homoscedastic Normal noise, I consider James–Stein type shrinkage in the estimation of nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I show that the standard leastsquares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014